

Смольянинова Е.И., Михайлов В.О., Дмитриев П.Н. Институт физики Земли им. О.Ю. Шмидта РАН, Москва, Россия

мировой практике PCA-интерферометрия (InSAR) В широко используется для картирования и мониторинга оползневых процессов. Накопление архивных радарных снимков за почти тридцатилетний период, регулярная съемка с новых спутников Sentinel 1А и В и бесплатное распространение снимков с этих спутников через Интернет, открывают новые перспективы применения методов РСА-интерферометрии, в том числе и для изучения и мониторинга оползней. Количество и активность оползневых структур в районе Большого Сочи постоянно растет вследствие увеличения антропогенной нагрузки. Характерные для этого района медленные оползневые смещения хорошо фиксируются методами PCAинтерферометрии. В целом, прибрежная часть Большого Сочи очень благоприятна для применения методов InSAR. Плотная застройка устойчиво отражает радарный сигнал, сравнительно невысокий (до 500м) и достаточно пологий рельеф позволяет минимизировать топографические погрешности, а отсутствие снега в зимний период дает возможность использовать круглогодичную съемку.

В ИФЗ работы по применению методов РСА-интерферометрии при изучении и мониторинге оползневых структур в районе Большого Сочи ведутся с 2012 года (Дмитриев и др., 2012, Михайлов и др., 2013, 2016, Смольянинова, 2018, 2019). В данной работе представлены результаты, полученные с применением методов радарной интерферометрии к снимкам с различных спутников, за период с 2007 по 2019 год для окрестностей г. Адлера. 2

Использованные снимки и технология обработки

ALOS-1 - трек 588А, 18 снимков, 22.01.2007-17.09.2010),
Envisat - трек 35D, 13 снимков, 29.11.2010-23.03.2012),
Sentinel-1A - трек 43А, 131 снимок, 06.04.20215-17.12.2019,
трек 123D, 113 снимок, 06.05. 2015-23.12.2019,
трек 145А, 33 снимка, 30.10.2018-12.12.2019,
трек 21D, 31 снимок, 27.11.2018-09.01.2020.

Интерферометрическая обработка снимков и расчеты полей смещений производились по методу малых базовых линий (SBAS), (Berardini et.al.,2002) реализованном в пакете ENVI SARscape v. 5.3.1.

При обработке снимков со спутника ALOS-1 временные базовые линии варьировались от 46 до 365 дней, Envisat – от 30 до 365 дней, Sentinel-1A (S-1A) от 12 до 36 дней.

Фильтрация интерферограмм перед разверткой фазы осуществлялась фильтром Гольдштейна (значения max и min коэффициентов соответственно 2.5 и 0.3).

При учете топографической фазы и геокодировании результатов использовалась ЦМР SRTM v.4.

Выполненный анализ методики проведения мониторинга оползневых склонов с точки зрения объемов вычислений и их точности показал, что, если использовать снимки только спутника Sentinel-1A, двухгодичная серия снимков является оптимальной. Изменения динамики смещений хорошо фиксируются при добавлении новой серии снимков за полугодовой период₃

- Для всех наборов снимков построены карты скоростей деформаций поверхности за соответствующие периоды времени. На картах, построенных для всего Адлерского района отдельные оползневые структуры в силу их малых размеров различимы только при большом увеличении, поэтому в данной работе показаны увеличенные фрагменты карт для трех оползневых участков с разной экспозицией склонов в с. Верхневеселое (ул. Коммунаров) (1), в с. Черешня (ул. Владимировская) (3) и с. Высокое (4).
- Динамика смещений в период 2007-2019 проанализирована по всем 5ти участкам.

N	Местоположение оползневого участка	координаты		
1	Ул. Коммунаров	39.976	43.426	
2	Ул. Комарова	39.998	43.445	
3	Ул. Владимировская	39.985	43.457	
4	с. Высокое	39.974	43.487	
5	с. Молдовка	39.960	43.465	

Розовым цветом показаны области оползневых проявлений по наземным данным (Вожик. 2016).

Ул. Коммунаров

Оползневой участок был впервые идентифицирован по карте средних скоростей смещений Vlos, построенной по снимкам со спутника ALOS-1. По наземным данным оползневые проявления здесь не зафиксированы.

Vlos ALOS-1 2007-2010

Верхневеселое

© 2020 Google Image © 2020 Maxar Technologies US Dept of State Geographer

Фрагменты карт Vlos оползневого участка на ул. Коммунаров по снимкам с разных орбит спутника S-1A (2018-2019)

-200100
-10020
-2010
-10 - 10
10 - 20
20 - 100
100 - 200
мм/год

РСА является локатором бокового обзора. При съемке с разных орбит (под разными углами визирования) зоны наложения и тени на снимках не совпадают. Соответственно на И картах, построенных по данным с разных треков, области / отсутствия И наличия информации о смещениях, часто не совпадают, особенно в условиях сложного рельефа. 6

Vlos"+" к спутнику ; "-" от спутника

21D

Фрагменты карт Vlos оползневого участка с. Высокое по снимкам с разных орбит спутника S-1A (2018-2019)

S-1A 123D

мм/год

Этот оползневой участок находится в пределах области оползневых проявлений, зафиксированной по наземным данным (показана розовым) (Вожик,2016).

Ориентация склонов, изрезанность рельефа (наряду растительности) наличием С получить позволяют здесь смещений лишь карты на отдельных участках, границы которых также не совпадают на картах с разных треков. 7

Фрагменты результатов наложения карт Vlos оползневых участков, построенных по снимкам с четырех треков спутника S-1A (2018-2019) (слайды 6 и 7)

N4 с. Высокое

300

N1 ул. Коммунаров

Карты, полученные по данным о смещениях поверхности с нескольких треков, обладают более высокой информативностью. Площадь участков, по которым нет информации о смещениях существенно уменьшается по сравнению с картами, построенными по одному треку (см. слайды 6 и 7). **Vlos**"+" к спутнику ; "-" от спутника -200 - -100 -100 - -20 -20 - -10 -10 - 10 10 - 20 20 - 100 100 - 200 мм/год

Ул. Владимировская

По наземным данным этот участок находится между двумя обширными областями оползневых проявлений. На рис.С - фото, иллюстрирующее современную оползневую активность в непосредственной близости от исследуемого участка (в 100м – место съемки обозначено желтым треугольником). По снимкам со спутников ALOS и Envisat до 2012 года скорости смещений Vlos здесь близки к нулю (Рис.А - зеленые области). С восходящих треков S-1A этот участок "не виден", а вот по данным с нисходящего трека 123D см смещения на этом участке в период 2015-2019 достигают 130 мм, при средней скорости вниз по склону до 60 мм/год. Это говорит о том, что в настоящее время исследуемый участок также вовлечен в оползневой процесс.

Временные серии смещений

Сравнить величины смещений, полученные по снимкам с разных спутников и на разных участках можно, если рассчитать смещения в предположении, что движения происходят вниз по склону. Значения смещений и скоростей вниз по склону в некоторых точках оползневых участков (1-5).

	ALC 2007-	ALOS-1 Envisat 007-2010 2010-2012		S-1A 2015-2019		Usd 2007-	
	Usd MM	Vsd мм/го Д	Usd MM	Vsd мм/го Д	Usd MM	Vsd мм/го Д	2019 мм
ул.Коммунаров	-540	-170		_	-800	-195	>1340 мм
ул.Комарова	-870	-195	*	*	-850	-200	>1720мм
ул. Владимировская	-354	-254	-	-	*	*	>354мм
Высокое	-722	-138	-90	-54	-680	-184	>1492 мм
Молдовка	*	*	-237	-158	-470	-120	>707мм

* - экспозиция склона и уклон не позволяют для угла визирования с данного спутника корректно вычислить скорость вдоль склона;

- информации о смещениях отсутствует

Из-за сильной изрезанности рельефа абсолютные значения смещений вниз по склону можно корректно вычислить не везде и не со всех орбит.

Выпадение осадков

(по архивным данным метеостанции Сочи (Адлер)

http://meteocenter.net 43.4°ш. 39.9°д. 13 м над ур. моря

Основным фактором, определяющим динамику движения оползней является обводненность грунтов, которая, в первую очередь, зависит от количества выпавших осадков. Приведенные гистограммы получены суммированием количества осадков за 1 и 6 месяцев.

Отмечается периодичность максимумов и минимумов суммарного количества осадков, выпадающих за полгода. Максимумы наблюдаются в феврале-марте, а минимумы в августе-сентябре.

Временные серии смещений S-1A 2015-2019

Средние скорости смещений Vlos за 6тимесячные интервалы

Для всех участков характерна периодичность максимумов и минимумов средних скоростей Vlos. Времена пиковых значений скоростей смещений Vlos на разных участках совпадают в пределах 1-2 месяцев

Динамика движений оползневых участков 1-5 и выпадение осадков 2015-2019

 экстремумы кривых средних значений Vlos за шестимесячные интервалы коррелируют с экстремумами гистограммы количества осадков за шестимесячные интервалы.

 Максимумы скоростей смещений приходятся на февраль-апрель, а минимумы на август-октябрь.

15

выводы

- На преобладающих в районах Большого Сочи территориях с плотной индивидуальной застройкой, где медленные смещения с трудом фиксируются наземными методами, InSAR при небольших затратах позволяет выделять множество новых зон активных оползневых деформаций, а также определять степень активности в период съемки ранее закартированных наземными методами оползневых структур.
- Привлечение архивных снимков и метеоданных позволяет успешно изучать динамику оползневых склонов в этом районе и прогнозировать области активизации смещений.
- Работа выполнена в рамках Госзадания ИФЗ